A Combinatorial Logic (also Combinational Logic) is a digital circuit where one or more outputs are boolean functions of multiple inputs. The basic boolean operations conjunction, disjunction and logical negation are sufficient to derive all other boolean as well as arithmetical operations. Opposed to a sequential logic, outputs are not dependent on their history, that is a combinatorial logic does not require memory.

In hardware, combinatorial logic can either realized with hardwired gates of certain logic families or programmable logic devices. If the number of inputs is reasonable small, a once programmed ROM or LUT can act as combinatorial logic. The inputs are the address, while one output is associated with a data-pin. In software this is like performing ALU-operations versus a memory lookup with pre-calculated outputs for all relevant inputs, related to the space-time tradeoff.

Concrete electronic gates often combine AND and OR with trailing NOT for so called NAND and NOR gates. As application of De Morgan's laws a NAND can also be interpreted as OR of inverted inputs, and NOR as AND of inverted inputs.

A half adder performs an addition on two one-bit binary numbers. Output of an AND gate is the carry, while a XOR gate leaves the one-bit sum. A full adder with tad more gates adds three one-bit binary numbers, the third usually to feed in the carry from the previous digit, usually in carry look ahead architectures, such as Kogge-Stone adder, also mentioned as parallel prefix algorithm.

Assuming there are 13 times 64 digital inputs from a hardware wired chessboard. The 13 inputs per square has one exclusive "one" signal for either one of the twelve pieces or an empty signal. For each square a number of attacks/defend outputs may be defined to implement a huge Combinatorial Logic as a "zero cycle" attack table, i. e. output a8 is attacked from south by white rook as DNF (sum of products).

C Syntax

With C-like operators, that is '&' for AND and '|' for OR, the DNF would look like this:

Home * Hardware * Combinatorial LogicCombinatorial Logic(also Combinational Logic) is a digital circuit where one or more outputs are boolean functions of multiple inputs. The basic boolean operations conjunction, disjunction and logical negation are sufficient to derive all other boolean as well as arithmetical operations. Opposed to a sequential logic, outputs are not dependent on their history, that is a combinatorial logic does not require memory.## Table of Contents

## Implementation

In hardware, combinatorial logic can either realized with hardwired gates of certain logic families or programmable logic devices. If the number of inputs is reasonable small, a once programmed ROM or LUT can act as combinatorial logic. The inputs are the address, while one output is associated with a data-pin. In software this is like performing ALU-operations versus a memory lookup with pre-calculated outputs for all relevant inputs, related to the space-time tradeoff.## Basic Operations

## AND

An AND gate implements a logical conjunction.## Truth Table

## Symbols and Circuits

## OR

An OR gate implements a logical disjunction.## Truth Table

## Symbols and Circuits

## NOT

A NOT gate orInverterimplements a logical negation.## Truth Table

## Symbols and Circuits

## Derived Operations

Concrete electronic gates often combine AND and OR with trailing NOT for so called NAND and NOR gates. As application of De Morgan's laws a NAND can also be interpreted as OR of inverted inputs, and NOR as AND of inverted inputs.## NAND

A NAND gate is the inversion of AND, NOT AND.## Truth Table

## Symbols and Circuits

## NOR

A NOR gate is the inversion of OR, NOT OR.## Truth Table

## Symbols and Circuits

## XOR

A XOR gate implements a exclusive disjunction, which might be derived from AND/OR/NOT, for instance from four NAND gates.## Truth Table

## Symbols and Circuits

## DNF and CNF

Combinational logic can visualized by truth tables and the construction is generally done using disjunctive (sum of products) or conjunctive normal form (products of sums), and using boolean algebra or Karnaugh maps to simplify the expression.## ALU

Combinatorial logic is a huge part of the arithmetic logic unit (ALU) of processors, which provides accordant boolean logical instructions working on all bits of a register in parallel as mentioned in General Setwise Operations of Bitboards. Therefor each Combinatorial Logic can of course emulated in software.## Adder

A half adder performs an addition on two one-bit binary numbers. Output of an AND gate is the carry, while a XOR gate leaves the one-bit sum. A full adder with tad more gates adds three one-bit binary numbers, the third usually to feed in the carry from the previous digit, usually in carry look ahead architectures, such as Kogge-Stone adder, also mentioned as parallel prefix algorithm.## Combinatorial Attacks

Assuming there are 13 times 64 digital inputs from a hardware wired chessboard. The 13 inputs per square has one exclusive "one" signal for either one of the twelve pieces or an empty signal. For each square a number of attacks/defend outputs may be defined to implement a huge Combinatorial Logic as a "zero cycle" attack table, i. e. outputa8 is attacked from south by white rookas DNF (sum of products).## C Syntax

With C-like operators, that is '&' for AND and '|' for OR, the DNF would look like this:## Circuit

The same sample as circuit f. i. in Diode logic with 34 diodes and 7 resistors:## See also

## External Links

AND gate

OR Gate

NOT Gate

NAND gate

NOR gate

XOR gate

XNOR gate

Fredkin gate

Toffoli gate

^{[1]}Relay

Diode logic

Resistor–transistor logic

Diode–transistor logic

Transistor–transistor logic

Emitter-coupled logic

Complementary metal–oxide–semiconductor

Integrated injection logic

## References

1982).Conservative logic. International Journal of Theoretical Physics, 21 :219–253, pdf## What links here?

Up one Level